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Spatial heterodyne spectroscopy (SHS) is a Fourier-transform spectroscopic technique that simulta-
neously records all path differences using a detector array. Compared to conventional Fourier-transform
spectroscopy that measures interferogram samples sequentially in the time domain, SHS is insensitive
to a changing scene; however, the effects caused by differences in the detector elements and�or the optics
for each sample must be addressed with a flatfield correction. The flatfield correction is typically a
characteristic of the instrument and does not change with the observed scene. We present three different
flatfielding approaches. Each is based on different assumptions and is applicable depending on the
instrumental effects dominating the flatfield. © 2006 Optical Society of America

OCIS codes: 300.6300, 120.2650, 040.5160.

1. Introduction

Spatial heterodyne spectroscopy (SHS) is a technique
that makes use of a spatially scanned interferometer.
This class of interferometers is receiving increased
attention in the experimental spectroscopy commu-
nity.1 The basic SHS configuration is similar to
that of a Michelson interferometer used for Fourier-
transform spectroscopy (FTS) with the return mir-
rors replaced by fixed diffraction gratings as shown in
Fig. 1. The simplest explanation of the SHS principle
is to consider the plane wavefronts entering the in-
terferometer as indicated by the dashed line following
L1 in Fig. 1. At the exit of the interferometer the
resulting two wavefronts are tilted with respect to
each other with a wavenumber-dependent tilt angle.
These crossed wavefronts produce a Fizeau fringe
pattern that is imaged on the detector array. Zero
spatial frequency corresponds to the Littrow wave-
number of the gratings. For other wavenumbers the
spatial frequency is proportional to the difference be-
tween the signal wavenumber and the Littrow wave-
number. The fringe pattern recorded by the detector
array is therefore equivalent to the Fourier transform
of the incident spectrum that is heterodyned around

the Littrow wavenumber. A defining characteristic of
SHS instruments is that they achieve the theoretical
resolution of the dispersive elements (gratings) but
have the large throughput associated with inter-
ferometers (including the possibility of field widen-
ing) with no moving parts. A detailed description of
the SHS concept can be found in publications by
Harlander et al.2–4

One major difference between SHS and a conven-
tional FTS is that a FTS interferogram is recorded in
the time domain by a single detector, whereas the
entire SHS interferogram is recorded simultaneously
with multiple detector elements. As a consequence,
the SHS interferogram is not compromised by tem-
poral source variations, which contaminate the spec-
tral information in the FTS case. On the other hand,
every SHS interferogram sample is recorded using a
different detector element, and the signal uses differ-
ent paths through the interferometer optics for each
interferogram sample (see Fig. 1). If the sample-to-
sample variations are not deemed negligible, a flat-
field correction must be applied. These intersample
variations are similar to a temporally changing scene
in the FTS case, with the important difference that in
SHS the variations are a constant characteristic of
the spectrometer and do not depend on the detected
scene, thus making a scene-independent correction
possible.

We adapt the term “flatfielding” for this correction
since it is commonly used for the elimination of pixel-
to-pixel variations in imaging detectors, which is a
closely related problem. Here we present three SHS
flatfielding approaches. The first one is suitable for
instruments in which the detector pixel-to-pixel sen-
sitivity variation dominates. The second one is suit-
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able if, in addition to the detector sensitivity varia-
tions, the signal from both interferometer arms is not
identical, e.g., due to the beam-splitter performance.
The third approach is suitable for cases in which a
spatial variability (e.g., scratches, manufacturing de-
fects, or surface contamination) in the grating perfor-
mance also plays a significant role.

Before we present the flatfielding techniques, we
introduce the raw SHS interferogram, which is the
fundamental equation for the discussion in Section 2.

2. Raw Spatial Heterodyne Spectroscopy
Interferogram

Using the small-angle approximation, the ideal SHS
interferogram can be written as2

I�x� �
1
2�

0

�

B� ����1 � cos�2��4�� � �0�tan �L�x��d�,

(1)

where B���� is the wavenumber-dependent spectral
density, �0 is the Littrow wavenumber for which the
recorded fringe frequency is zero, �L is the grating
angle, and x is the pixel location. The leading factor of
1⁄2 accounts for the fact that, as in FTS, half of the
incident signal leaves the interferometer through the
input port, and half is detected at the output port. To
simplify the following steps, we introduce the
heterodyned fringe frequency � 	 4�� � �0�tan �L

and the heterodyned spectral density B��� 	 �B���0

� ��4 tan �L� � B���0 � ��4 tan �L���4 tan �L with �
	 0. Using these definitions we get

I�x� �
1
2 �

0

�

B����1 � cos�2��x��d�, (2)

showing that the heterodyned spectral density is es-
sentially the Fourier transform of the modulated part
of the interferogram. Note that the signals from the
upper �� 	 �0� and lower �� 
 �0� sideband of the
spectral density both result in positive fringe fre-
quencies and therefore are superimposed in the spec-
trum retrieved by Fourier transformation of the
interferogram unless one sideband is suppressed by a
spectral prefilter. Harlander et al.2 detailed a tech-
nique for unambiguously separating these sidebands
by using a cross tilt in the grating alignment and
employing a two-dimensional Fourier transform to
generate the spectrum.

In practice, nonideal instrument properties can
have additional effects on the raw interferogram. The
raw interferogram measured along one row of a SHS
detector array can generally be represented as

I�x� � �
0

�

B����tA
2�x, �� � tB

2�x, ��

� 2��x, ��tA�x, ��tB�x, ��
� cos�2��x � �x, ����d�, (3)

where ��x, �� is the modulation efficiency, and �x, ��
is a phase distortion term. The terms tA

2�x, �� and
tB

2�x, �� are the intensity transmission functions for
the signal passing through the two interferometer
arms A and B, multiplied by the individual detector
responsivity. The resulting raw interferogram I(x) is
generally recorded in digital units using an analog-
to-digital converter (ADU). The raw measurement is
subsequently calibrated yielding the spectral radi-
ance of the source. The calibration generally requires
proper flatfielding, therefore we will use raw inter-
ferograms in Section 5.

Equation (3) is a general representation of a SHS
interferogram and allows for all possible spectral and
spatial dependencies. For an ideal SHS instrument,
tA

2�x, �� and tB
2�x, �� are identical �1�4� and do not

depend on x or �, �x, �� is zero, and ��x, �� is close to
unity for zero optical path difference and slowly de-
creases for higher path differences due to the finite
étendue of the interferometer.5

It has been shown in the work of Harlander et al.3
and Englert et al.6 that a phase distortion can be
corrected without impacting the envelope of the mod-
ulated part of the interferogram. Nevertheless, we
will carry the phase distortion term along to show
that it does not affect the flatfielding and that it is
conserved by the flatfielding. We further make the
assumption that the spectral dependence of tA

2�x, ��
and tB

2�x, �� is identical for both arms so it can be
separated into the function R���, and we can write

Fig. 1. Schematic diagram of basic non-field-widened SHS con-
figuration. The dashed lines illustrate incoming wavefronts and
the corresponding exiting wavefronts that are crossed with an
angle of 2�. The ray bundle for two interferogram samples is out-
lined showing that only a small section of the interferometer and
optics is used for any individual interferogram sample.
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A consideration of the effects contributing to the
spectral dependences of tA

2�x, �� and tB
2�x, �� con-

firms that this assumption is good: the spectral de-
pendence due to the spectral response of the detector
elements is by design identical for the signal of both
arms. The design of both interferometer arms is iden-
tical so that the spectral dependence of the grating
efficiency, the optical transmittance, reflectance, and
scattering occurring on all optical elements in the
instrument can safely be assumed to be identical for
both arms. Furthermore, for SHS instruments that
have a very narrow bandpass [e.g., 3 nm in the near
UV for the Spatial Heterodyne Imager for Meso-
pheric Radicals (SHIMMER) on STPSat-1 (Space
Test Program Satellite-1)7], spectral dependencies
are not only very similar for both arms, but also very
small. Note that this assumption does not imply a
50%�50% beam splitter, but only that the spectral
dependence of the beam-splitter reflection and the
transmission are equal for both arms.

3. Effects of Nonideal Flatfields

The goal of the SHS flatfield correction is to eliminate
the interpixel variations introduced into the inter-
ferogram through the terms tA�x�, tB�x�, and ��x, ��.

The most straightforward nonideal flatfield is
caused by a random pixel sensitivity variation
across the detector, which results in a multiplica-
tive function applied to the perfect interferogram
and a decreased signal-to-noise ratio in the re-
trieved spectrum. If we assume an otherwise ideal
double sided interferogram with N pixels and a ran-
dom, relative pixel sensitivity variation of �s�s, the
signal-to-noise ratio in the retrieved spectrum will be
between 
N�2s��s and 
2�Ns��s, where the two ex-
treme cases result from multiplex noise propagation
assuming a single, unresolved line and a continuum
spectrum, respectively. For N � 640 and a random
pixel sensitivity variation of �s�s � 5%, for example,
the uncorrected flatfield would cause a signal-to-
noise ratio in the spectrum of between 357.8 and 1.1,
depending on the spectral content of the source. This
simple example demonstrates that flatfield effects
can have a serious impact on the quality of the re-
trieved spectra, especially for full spectra that do not
contain only a few isolated emission lines.

In case the flatfield shows a significant structure,
for example, a scratch in the grating or a significant

decrease in modulation efficiency toward the edge of
the detector, it is also appropriate to interpret the
effect of the flatfield as a change in the instrumental
line shape function. As shown in Eq. (4b), the uncor-
rected flatfield results in multiplicative functions for
the nonmodulated and modulated part of the inter-
ferogram. The multiplicative functions are equiva-
lent to convolution kernels in the spectral domain
that have to be applied to the interferogram terms.
The changed instrumental line shape typically re-
sults in a lower spectral resolution and in systematic
errors from the incomplete removal of the contribu-
tions from the nonmodulated interferogram term. In
general, flatfield errors result in higher noise, lower
spectral resolution, and systematic errors in the re-
trieved spectrum.

The magnitude of the introduced errors obviously
depends on the severity of the flatfield variations. In
Subsection 5.D we present an example of a measured,
flatfield corrected spectrum and the difference to
the uncorrected spectrum by using a monochromatic
source (see Fig. 6).

4. Flatfielding Techniques

We consider three flatfielding techniques in this pa-
per, which should be applied depending on what in-
strumental effects dominate the variations in the
flatfield. In Subsections 4.A–4.C we describe these
three flatfielding approaches and the conditions un-
der which their application is suitable. In Section 5
we illustrate the flatfielding problem using data
taken with a breadboard SHS instrument.

A. Balanced Arm Flatfielding Approach

The balanced arm flatfielding approach is the sim-
plest of the three. It is based on the assumption that
tA�x� 	 tB�x�, or that the signal from both interferom-
eter arms is equal or balanced. This is a good assump-
tion when the spatial variability of tA�x� and tB�x� is
dominated by the sensitivity of the detector elements.
In this case, the flatfield is independent of the in-
terferometer arm (A or B) that the signal passes
through. This approach does not correct for de-
creased fringe modulation due to an efficiency mis-
match between the interferometer arms.

The idea behind this approach is to measure the
nonmodulated part of the interferogram, which can
be accomplished in a number of ways. One way is to

I�x� ��
0

�

B���R����tA
2�x� � tB

2�x� � 2��x, ��tA�x�tB�x�cos�2��x � �x, ����d�, (4a)

I�x�� �
0

�

B���R����tA
2�x� � tB

2�x��d� � �
0

�

2B���R�����x, ��tA�x�tB�x�cos�2��x � �x, ���d�

Nonmodulated term Modulated term

(4b)
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take two measurements, each with one interferom-
eter arm blocked by inserting an opaque material
between the beam splitter and the grating. The sum
of the measurement with arm A blocked and the
measurement with arm B blocked yields the non-
modulated part of the interferogram. Another
method is to change the optical path in one of the
arms during an exposure period by significantly
more than one half of the longest observed wave-
length, so that the modulation is completely washed
out for all wavelengths. This can be done, for exam-
ple, by pressure scanning one arm or tilting a plane-
parallel plate in one arm.

The nonmodulated part of the interferogram can be
written as

IU�x� ��
0

�

Ba���R����tA
2�x� � tB

2�x��d�

� �tA
2�x� � tB

2�x���
0

�

Ba���R���d�

� C1�tA
2�x� � tB

2�x��, (5)

where C1 is a scalar that depends on the spectrum of
the observed source Ba���. The ratio of the interfero-
gram in Eq. (4b) and IU�x� yields

I�x�
IU�x�

� C2 �
1
C1

�
0

�

B���R���

��2��x, ��
tA�x�tB�x�

tA
2�x� � tB

2�x�

� cos�2��x � �x, ����d�, (6)

where the scalar C2 is unity if the same source is used
for both measurements. Using the above-mentioned
assumption tA�x� 	 tB�x� we can write

I�x�
IU�x�

� C2 �
1
C1

�
0

�

�B���R�����x, ��

� cos�2��x � �x, ����d�. (7)

We have eliminated the interferogram sample (x) de-
pendence in the nonmodulated term and only the
scalar C2 remains. After Fourier transformation
into the spectral domain this scalar will contribute
solely to the retrieved spectral density at the Lit-
trow wavenumber (zero spatial frequency). Since all
wavenumbers contribute a signal at zero spatial
frequency through the nonmodulated term in Eq.
(4b), most SHS instruments have eliminated any
real spectral signal at zero spatial frequency by
either choosing a spectral prefilter that is opaque at
the Littrow wavenumber or by using a cross tilt
in the grating alignment and employing a two-

dimensional transform to generate the spectrum.2
In these cases the additive term C2 at zero spatial
frequency can be ignored.

After phase distortion correction,3,6 the second
term of Eq. (5) is simply the cosine transform of the
spectral intensity B��� multiplied by R����C1 and
��x, ��. R����C1 represents the spectral response of
the spectrometer. According to the convolution theo-
rem, the modulation efficiency ��x, �� represents the
Fourier transform of the instrumental line shape
function, which can be verified by measuring line
sources.

B. Unbalanced Arm Flatfielding Approach

The unbalanced arm flatfielding approach does not
require the balanced arm assumption tA�x� 	 tB�x�,
but requires instead the less stringent assumption
that the integral in Eq. (6) is zero when averaged over
all interferogram samples:

�
0

�

B���R����2��x, ��
tA�x�tB�x�

tA
2�x� � tB

2�x�

� cos�2��x � �x, ����d��
x

� 0. (8)

For slowly varying t(x) and ��x, �� and a negligible
signal at low spatial frequencies this is a good as-
sumption. This approach allows the correction of the
interferogram if in addition to pixel-to-pixel sensitiv-
ity variations, the signal from both arms is not iden-
tical, e.g., because of the beam-splitter properties.
Like the first approach, it also does not correct for
modulation efficiency.

The idea behind this approach is to measure the
nonmodulated part of the interferogram for the sig-
nal from each interferometer arm separately. By
blocking interferometer arm B and A, one at a time,
as described in Subsection 4.A we get the following
two interferograms:

IA�x�� �
0

�

Ba���R���tA
2�x�d�

� tA
2�x� �

0

�

Ba���R���d� � C1tA
2�x�, (9)

IB�x� ��
0

�

Ba���R���tB
2�x�d�

� tB
2�x��

0

�

Ba���R���d� � C1tB
2�x�. (10)

Again, C1 is a scalar that depends on the spectrum of
the observed source Ba���. The ratio of the interfero-
gram in Eq. (4b) and the sum of IA�x� and IB�x� yields
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The next step is to subtract the scalar C2. If the same
source is used for the flatfield measurements IA�x�
and IB�x� and the interferogram I�x�, then C2 is unity
and we can eliminate it by subtracting unity from
Eq. (11). In the general case in which a different
source is used for the interferogram I�x�, we can use
the assumption of Eq. (8) and determine C2 by calcu-
lating the average of the right-hand side of Eq. (11).
After the subtraction of C2 we can divide the modu-
lated term in Eq. (11) by �2�IA�x�IB�x��1�2���IA�x� �
IB�x�� to get the flatfield corrected interferogram IC�x�:

IC�x� �
1
C1
�

0

�

B���R�����x, ��cos�2��x � �x, ���d�.

(12)

This result is similar to the balanced-arm approach,
but it properly corrects for the effect of unequal or
unbalanced signal levels from the interferometer
arms.

C. Phase-Shift Flatfielding Approach

The phase-shift flatfielding approach is motivated
by measurements with spectrometers that show
grating imperfections such as manufacturing de-
fects, scratches, or surface dust particle contamina-
tion. These defects generally increase the scattering
at the affected grating location and�or decrease the
grating efficiency. The affected interferogram sam-
ples typically show lower overall signal levels and
decreased modulation efficiency. These effects are
generally wavelength independent, especially for
narrowband instruments.

The goal of this flatfielding approach is to quantify
the modulated and nonmodulated contribution to a
monochromatic interferogram to provide a general
flatfield correction that includes the effect of grating
imperfections. This approach corrects for all flatfield
effects, but it is also the most complex. It requires a
monochromatic light source and the ability to change
the optical path length in one interferometer arm.

The approach requires the measurement of three
interferograms, each using the same monochromatic
source, but different optical path lengths in one of the
interferometer arms. The change in optical path
length can be achieved by moving one grating, pres-
sure scanning one arm, or tilting a plane-parallel
plate in one arm. The resulting interferograms can be
written as

Ii�x� � B��0�R��0��tA
2�x� � tB

2�x� � 2��x, �0�tA�x�
� tB�x�cos�2��0x � �x, �� � �i��

� N�x, �0� � M�x, �0�cos�2��0x � �x, �� � �i�,
i � 1, 2, 3 � �1 � �2 � �3. (13)

The next step is to determine the phases �i�x� 	
�2��0x � ��x, �� � �i� for each measurement �i �
1, 2, 3� and each interferogram sample x. This can be
achieved by using the technique described by
Harlander et al.3 and Englert et al.6 It consists of
Fourier transformation of the interferogram, isola-
tion of the spectral line for positive frequencies, and
backtransformation into the interferogram domain,
where the ratio of the imaginary part and the real
part is equivalent to the tangent of the phase. Note
that this technique to determine the phase also ac-
counts for phase distortions and slight changes in �0

that might result from a grating tilt during the trans-
lation of a grating. After determining the phases
�i�x�, we can calculate the nonmodulated contribu-
tion N�x, �0� and the amplitude of the modulated con-
tribution M�x, �0� of the interferograms for each
interferogram sample using the above measure-
ments:

M�x, �0� �
Ii�x� � Ij�x�

cos �i�x� � cos �j�x�
, i � j, (14)

N�x, �0� � I1�x� � M�x, �0�cos �1�x�, (15)

where i and j in Eq. (14) are chosen for each inter-
ferogram sample so that the denominator is never
zero. This is the reason why three measurements
with different phase offsets are necessary and two are
not sufficient. It is best to choose i and j so that the
absolute value of the denominator is as large as pos-
sible to avoid the division by a small number, which
increases the uncertainty of the result when noise is
present. A good choice for the three phase offsets
�1�2�3 is, for example, 0°, 90°, and 180°, which causes
the absolute value of the denominator in Eq. (14) to
fall always between approximately 1 and 
2.

We can now eliminate the nonmodulated contribu-
tion of any interferogram by dividing the interfero-
gram by N�x, �0� and subtracting the mean, similar to
the unbalanced arm approach. Dividing the result by
M�x, �0� will remove the variations in modulation ef-
ficiency and the effects of the unbalanced arm signals’
assumption of their wavelength independence.

I�x�
IA�x� � IB�x�

� C2 �
1
C1
�

0

�

B���R���2��x, ��
tA�x�tB�x�

tA
2�x� � tB

2�x�
cos�2��x � �x, ���d�.

Modulated term

(11)
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5. Flatfielding Examples Using Measured Data

A. Visible�Near-Infrared Breadboard Instrument

The data presented in the following subsections were
measured with a visible�near-infrared breadboard
SHS instrument.8 The key instrument parameters
and the light source used for the measurements are
summarized in Table 1. Figure 2 shows the inter-
ferometer of the breadboard instrument. All the com-
ponents of this instrument are commercially available.
The light from the source was diffused at a small di-
ameter iris and collimated by a spherical lens before
entering the interferometer. The gratings are imaged
on the detector array. All the measurements have
been dark-field corrected. The two-dimensional CCD
image was binned to form ten rows (interferograms)

with 640 samples each. For the following discussion,
we present the data from row 7.

B. Example for Balanced-Arm Flatfielding

The upper panel of Fig. 3 shows a raw, monochro-
matic interferogram (black) and the measured non-
modulated component (gray). The measurement of
the nonmodulated component was obtained by block-
ing one interferometer arm at a time by using a piece
of black paper and adding the two measurements.
The nonmodulated part of the interferogram shows
little pixel-to-pixel variation, indicating very similar
pixel sensitivity. A slight decrease in the nonmodu-
lated signal can be seen at approximately pixel 560,
which is also visible as a signal decrease in the raw
interferogram. The center panel of Fig. 3 shows the
interferogram after the balanced arm flatfielding ap-
proach was applied. Since the pixel-to-pixel sensitiv-
ity variations are small in this example, the corrected
interferogram looks similar to the raw interferogram.
The flatfield correction improves the problem at ap-
proximately sample 560, but even after the correction
a slight irregularity can be identified, which indicates
that it is not caused by a difference in detector sen-
sitivity. The bottom panel of Fig. 3 shows the real and
imaginary parts of the spectrum that were retrieved
by zero filling and Fourier transforming the interfero-
gram. The remaining instrumental effect at approx-
imately sample 560 is so small that the real part of
the spectrum shows no significant deviation from a
sinc function, which is expected from the finite length
interferogram and an unresolved laser line source.

Fig. 2. Interferometer of the visible�near-infrared breadboard in-
strument. The input is on the lower left-hand side of the cubic
beam splitter. The gratings are mounted using commercial three-
point mounts. The grating on the right is mounted on a translation
stage and can be moved away or toward the beam splitter. All the
components of this breadboard spectrometer are commercially
available (see also Table 1).

Fig. 3. Top panel: raw monochromatic interferogram (black) and
the nonmodulated signal (gray) measured by blocking one inter-
ferometer arm at a time and adding the two measurements. Center
panel: interferogram after application of the balanced arm flat-
fielding method. Bottom panel: real (black) and imaginary (gray)
parts of the spectrum calculated from the corrected interferogram
by phase correction, zero filling, and Fourier transformation. Since
an unresolved line source was used for this measurement, the
spectrum represents the instrumental line shape function.

Table 1. Key Design Parameters of the Visible�Near-Infrared SHS
Breadboard Instrument

Parameter Value�Description

Resolving power �13 000
Bandpass �700–900 nm
Beam splitter Cubic, BK7
Gratings 60 grooves�mm, blazed
Exit optics Telecentric lens,

Magnification: 0.5
Spectral filter Hoya R-72
Detector array Micro-Pix M640

640 � 480, 7.4 �m pitch
Light source Digikey M7805I

780 nm laser diode module
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C. Example for Unbalanced-Arm Flatfielding

The upper panel of Fig. 4 shows the nonmodulated
components of the spectrum for the two interferom-
eter arms. They are measured by blocking one arm at
a time. The contributions from both arms are not
perfectly balanced for this interferometer. Some
features are common to both arms, others are not.
For example, the feature at pixel 560 is present only
in one interferometer arm, indicating that it is a
scratch, a manufacturing defect, or contamination on
the corresponding grating.

The middle panel of Fig. 4 shows the term
�2�IA�x�IB�x��1�2���IA�x� � IB�x�� that is needed to cor-
rect for the effect of the unbalanced-arm contribu-
tions on the envelope of the modulated part of the
interferogram [Eqs. (11) and (12)]. Except for the re-
gion at approximately pixel 560, this correction factor
is always within 0.1% of unity for this example.

The lower panel of Fig. 4 shows the interferogram
after application of the unbalanced arm flatfielding
method.

D. Example for Phase-Shift Flatfielding

Figure 5 shows the measurements I1�x�, I2�x�, and
I3�x� [Eq. (13)] around the area of the grating imper-
fection. The different phase shifts of the interfero-
gram were achieved by moving one grating by using
a micrometer driven translation stage. The middle
panel shows the modulated and nonmodulated con-
tributions to the interferogram as calculated using
Eqs. (14) and (15). The lower panel shows the cor-
rected interferogram. The improvement made by this
flatfielding approach to the area at approximately
pixel 560 can be seen clearly by comparing the raw
interferograms in the upper panel to the corrected
interferogram in the lower panel.

Figure 6 shows the nonmodulated and modulated
components for the entire interferogram in the upper
panel and the corrected interferogram in the center.

The lower panel shows the retrieved spectrum and
the difference between the corrected and the uncor-
rected spectrum multiplied by 10.

The example data we used to illustrate the flat-
fielding techniques are of high quality, i.e., the beam
splitter, grating, exit optics, and detector elements
did not cause major flatfield inhomogeneities. De-
pending on the wavelength region, such high quality
components might not always be available. In these
cases, a proper flatfield correction gains in impor-
tance.

Fig. 4. Top panel: nonmodulated interferogram components mea-
sured with one arm blocked. Center panel: correction factor for the
multiplicative term of the modulated interferometer part that is
caused by the unbalanced arm contributions. Bottom panel: cor-
rected interferogram.

Fig. 5. Top panel: raw interferograms for three different grating
locations resulting in a phase shift for each interferogram. Center
panel: nonmodulated interferogram part (black) and the envelope
of the modulated interferogram part (gray) as calculated from the
raw interferograms. Bottom panel: corrected interferogram.

Fig. 6. Top panel: nonmodulated interferogram part (black) and
the envelope of the modulated interferogram part (gray) as in the
center panel of Fig. 5 but for the entire interferogram. Center
panel: corrected interferogram. Bottom panel: real part of the cor-
rected spectrum and the difference between the corrected and
uncorrected spectrum multiplied by 10.
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6. Conclusion

Variations in optics and detector pixels have long
been recognized as a data analysis issue for all spec-
trometers that use detector arrays. We have pre-
sented three methods to correct for pixel-to-pixel
variations in spatial heterodyne spectroscopy. When
the flatfield error is dominated by the sensitivity vari-
ations in the detector array the balanced arm ap-
proach is appropriate. When significant differences in
the signal from the two interferometer arms exist, the
unbalanced arm approach is appropriate. When the
gratings exhibit significant irregularities such as
scratches, the phase-shift flatfielding approach is ap-
propriate. All flatfielding corrections require addi-
tional measurements. The easiest way to obtain the
necessary flatfield measurements for the first two
methods is to block one interferometer arm at a time.
The third method requires a change of the optical
path length in one arm, which is usually harder to
achieve, but is possible by moving the grating, pres-
sure scanning one arm, or tilting a plane-parallel
plate in one arm.

In principle, any interferogram measured by one
particular spectrometer can be flatfield corrected us-
ing one set of flatfield measurements. However, care
needs to be taken to eliminate effects that could
change the flatfield such as thermal distortion of the
instrument causing a shift or magnification change of
the imaged interferogram. If the flatfield is likely to
change with time, e.g., due to extreme thermal con-
ditions, it may be necessary to record flatfield mea-
surements periodically during the observation.
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