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[1] The Vadas-Fritts ray-tracing model for convectively generated gravity waves is
analyzed using the stationary phase approximation and is interpreted in terms of a ray
Jacobian approximated by the density of rays. The Vadas-Fritts model launches rays from
the convective source region, with initial conditions for the ray-tracing deduced from a
near-field integral representation. In the far-field the rays are binned in space-time grid
cells. The contribution of each ray to the spatial wave amplitude is determined by its
spectral amplitude and by the local density of rays within the grid cells. The present
analysis accomplishes two things. First, the stationary phase analysis gives the formal
initial conditions for the ray-tracing, which mostly agree with the Vadas-Fritts initialization
but also suggest some refinements. Secondly, the Jacobian and ray-density analysis shows
how the Vadas-Fritts model can be generalized to follow a beam of rays with a single
moving grid cell.

Citation: Broutman, D., and S. D. Eckermann (2012), Analysis of a ray-tracing model for gravity waves generated by
tropospheric convection., J. Geophys. Res., 117, D05132, doi:10.1029/2011JD016975.

1. Introduction

[2] Gravity waves generated by tropospheric convection
can propagate high into the atmosphere, reaching altitudes of
200 kilometers or more. While high resolution simulations
using fully nonlinear mesoscale atmospheric models can
capture the processes near the tropospheric source, extending
these models with sufficient resolution to such high altitudes
is computationally impractical. Thus, alternative approaches
are required to model the deep penetration of convectively
generated gravity waves into the middle and upper
atmosphere.
[3] One such approach for convectively generated gravity

waves has been developed by Vadas and Fritts [2001, 2004,
2005, 2009] and has been used to interpret a number of
observations, including airglow data from the mesopause
region near 85 km altitude [Vadas et al., 2009] and iono-
spheric soundings of the F-layer near 250 km altitude [Vadas
and Crowley, 2010].
[4] The Vadas-Fritts model consists of a Fourier-Laplace

integral representation for the near-field around the convec-
tive forcing, and a ray-tracing for the propagation of the
gravity waves into the far-field. The initial conditions for the
far-field ray-tracing are deduced from the near-field integral
representation.
[5] In this paper, we examine the Vadas-Fritts ray-tracing

model. Our main analysis tool is the stationary phase
approximation for the near-field integral representation,

which we present based on the theory of Lighthill [1996].
The stationary phase approximation, like the Vadas-Fritts
theory, takes spectral wave amplitudes from the near-field
integral representation and produces a ray solution for the
gravity waves emerging from the forcing. It thus provides all
the information necessary to initialize a far-field ray-tracing.
Mostly, the stationary phase theory supports the Vadas-Fritts
ray-tracing initialization, but there are some small differ-
ences that suggest potential refinements to the specification
of the initial conditions.
[6] We also examine the Vadas-Fritts method of comput-

ing the spatial wave amplitudes in the ray-tracing. Their
method is new, at least in the context of gravity waves, in the
way that it accounts for the three dimensional geometrical
spreading of the rays. In principle, the effects of geometrical
spreading on wave amplitudes can be obtained by advecting
a ray-tube volume element along each ray, but this is noto-
riously difficult in practice, as discussed by Hasha et al.
[2008]. The Vadas-Fritts method is a practical alternative
to the ray-tube method and is potentially useful for other
gravity wave applications. We analyze the Vadas-Fritts
method in a different but equivalent way to their formula-
tion, making explicit use of a ray Jacobian and relating the
ray Jacobian to the density of the rays. The advantages of
this approach are summarized at the conclusion of the paper.
[7] The paper is organized as follows. In section 2 the

Vadas-Fritts model equations are presented, along with an
integral representation for the solution. This is followed in
section 3 by a presentation of the stationary phase approxi-
mation for the integral representation. In section 4 the ray
Jacobian and density of rays are discussed in relation to the
Vadas-Fritts method of wave amplitude calculation. In
section 5 the specific forms for the convective forcing terms
of the Vadas-Fritts model are introduced, and examples of
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the solution are presented based on the stationary phase
analysis. In section 6 the stationary phase and Vadas-Fritts
ray initializations are compared. In section 7, the extension
to a non-uniform background is discussed. In section 8 our
main results are summarized, with suggestions for further
analysis.
[8] We assume a uniform background throughout this

paper, except to indicate in section 7 how the method can be
extended to a non-uniform background. We also make the
Boussinesq approximation and ignore dissipation. While
dissipative effects are an important component of the Vadas-
Fritts ray-tracing model, they are not needed for our pur-
poses and so are omitted. The presentation is fairly general
until section 5, where the specific Vadas-Fritts forcing terms
are introduced.
[9] We give a modified derivation of the Vadas-Fritts

integral representation using a Fourier transform in time,
rather than the Laplace transform of the Vadas-Fritts theory.
The modified derivation is based on work by Lighthill
[1996], and its equivalence to the Vadas-Fritts solution is
shown in Appendix A.

2. The Vadas-Fritts Model

[10] We consider a simplified form of the Vadas-Fritts
model, as used in section 2.1.1 of Vadas and Fritts [2009]. It
is Boussinesq, incompressible, inviscid, and without the
influence of the earth’s rotation. The background is uniform
and at rest. The linearized governing equations are [see
Vadas and Fritts, 2001, equation (2)]

ut þ px=�r ¼ 0; ð1Þ

vt þ py=�r ¼ 0; ð2Þ

wt þ pz=�r� gq=�q ¼ q xð Þr tð Þ; ð3Þ

qt þ �qN 2w=g ¼ 0; ð4Þ

ux þ vy þ wz ¼ 0: ð5Þ

Here t is time, (u, v, w) are the perturbation velocity com-
ponents in x = (x, y, z), with z positive upwards, N is the
unperturbed buoyancy frequency, g = 9.8 m s�2 is gravita-
tional acceleration, p and q are the perturbation pressure and
potential temperature, and �q and �r are the mean potential
temperature and density.
[11] The forcing term in (3) has the separable form q(x)r(t)

and is localized in space and time. As in the Vadas-Fritts
calculations, we find solutions that are valid for times after
the forcing has finished. The forcing represents a single
convective plume. We ignore the contribution from waves
that initially propagate downward from the source and are
reflected back upward by the ground. Ground reflected
waves can be included by adding an image source below the
ground. Cases with multiple convective plumes and ground
reflection are studied by Vadas and Fritts [2009].
Throughout our paper, reference to the Vadas-Fritts model
means its simplest version, with the above specifications.

[12] Equations (1)–(5) combine to give

r2wtt þ N 2r2
hw ¼ rt r2

hq; ð6Þ

where rh
2 = ∂x2 + ∂y2 and r2 = rh

2 + ∂z2.
[13] We introduce the Fourier transforms

R wð Þ ¼ 1

2p

Z
r tð Þe�{wt dt; ð7Þ

Q kð Þ ¼ 1

2pð Þ3
Z

q xð Þe{k⋅x dx; ð8Þ

and

W k;wð Þ ¼ 1

2pð Þ4
Z Z

w x; tð Þe{ k⋅x�wtð Þ dx dt: ð9Þ

The frequency is w, and the wave number is k = (k, l, m).
The spatial integrals above and the wave number integrals
below are all three-dimensional, and all integration limits are
�∞. The inverse Fourier transform of (9) is

w x; tð Þ ¼
Z Z

W k;wð Þe�{ k⋅x�wtð Þ dk dw: ð10Þ

Our Fourier transform notation is the same as in equation
(A4) of Lighthill [1996] and differs from that of equation (2)
of Vadas and Fritts [2009] in that they place the 1/2p factors
in the inverse transform rather than the forward transform.
[14] Taking the Fourier transform of (6) in time and space,

and solving for W gives

W k;wð Þ ¼ �{wk2hQR=B; ð11Þ

where

B k;wð Þ ¼ w2 k2h þ m2
� �� N 2k2h ; ð12Þ

with kh
2 = k2 + l2. The dispersion relation for gravity waves is

defined by the relation B = 0. We let s denote a frequency
that satisfies the dispersion relation, i.e.

s2 ¼ k2hN
2= k2h þ m2
� �

: ð13Þ

We take s to be positive, so the zeros of B are at w = �s(k).
[15] We define

�Q ≡� {wk2hQR; ð14Þ

so that, from (11), W k;wð Þ ¼ �Q=B. Then (10) becomes

w x; tð Þ ¼
Z Z

�Q=Bð Þe�{ k⋅x�wtð Þdk dw: ð15Þ

[16] After the transient forcing has finished, the integral
(15) becomes [Lighthill, 1996]

w x; tð Þ ¼
Z

~w k; tð Þe�{k⋅xdk: ð16Þ

Here

~w k; tð Þ ¼ F kð Þe{st þ G kð Þe�{st; ð17Þ
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with

F kð Þ ¼ 2p{ �Q k;sð Þ=Bw k;sð Þ; ð18Þ

¼ p s2=N 2
� �

Q kð ÞR sð Þ; ð19Þ

G kð Þ ¼ 2p{ �Q k;�sð Þ=Bw k;�sð Þ; ð20Þ

¼ p s2=N 2
� �

Q kð ÞR �sð Þ: ð21Þ

From (12), we have used Bw ≡ ∂ B/∂ w = 2w(kh
2 + m2) to

arrive at (19) and (21). The notation is that w(x, t) has the
spatial Fourier transform ~w k; tð Þ and the space-time Fourier
transform W(k, w).

3. The Stationary Phase Approximation

[17] The stationary phase solution for (16) derived by
Lighthill [1996], and designated here by w1, is

w1 ¼ 2pNtð Þ3=2r�3sinqcos1=2q F kð Þe{a þ G �kð Þe�{a½ �: ð22Þ

This is expressed in spherical coordinates (r, q, f), where

x ¼ rsinqcosf; y ¼ rsinqsinf; z ¼ z0 þ rcosq: ð23Þ

The source is centered at x0 = (0, 0, z0).
[18] The wave phase in (22) is

a ¼ Ntcosqþ p=4� mz0; ð24Þ

¼ st þ p=4� mz0: ð25Þ

We have used s = N cos q from (13) and (26) to obtain (25)
from (24).
[19] The wave number components are

k ¼ Kcosqcosf; l ¼ Kcosqsinf;m ¼ �Ksinq: ð26Þ

The wave number magnitude is

K ¼ Nt=rð Þsinq: ð27Þ

This is the stationary phase condition. It is equivalent to

r ¼ jcgjt; ð28Þ

since the group velocity vector cg has magnitude N| sin q |/K.
[20] In the stationary phase solution (22), the position,

time, and wave number cannot all be set independently.
They are related by the stationary phase condition (27)
or (28).
[21] For example, if K and q are fixed, then according to

(28) the position r moves at speed |cg|t. This is equivalent to
following a ray. The stationary phase solution (22) then
shows that the wave amplitude decreases along the ray as
t�3/2 or as r�3/2. This decrease is the result of geometrical
spreading.
[22] The reason that the wave number argument of G in

(22) has a negative sign is to match the negative sign in the
associated wave phase, with frequency�s. The combination

�k, �s has the same group velocity and corresponds to the
same ray as the combination k, s. Nevertheless, these are two
linearly independent terms, and both are needed to satisfy
arbitrary initial conditions.

4. Jacobian Approximation and Ray Density

[23] The stationary phase solution (22) contains the factor

J�1=2 ¼ Ntð Þ3=2r�3sinqcos1=2q: ð29Þ

Here J is the Jacobian determinant

J ¼ j∂ x; y; zð Þ=∂ k; l;mð Þj ð30Þ

of the ray transformation between wave number and spatial
coordinates. The ray transformation is the stationary phase
condition (27) or (28).
[24] The stationary phase solution (22) is expressed in

terms of the Jacobian as

w1 x; tð Þ ¼ 2pð Þ3=2J�1=2W1; ð31Þ

where

W1 k; tð Þ ¼ F kð Þe{a þ G �kð Þe�{a: ð32Þ

We refer to W1 as the spectral stationary phase solution, or
the spectral ray solution.
[25] The aim here is to find a practical approximation for

the Jacobian J that can be used in a numerical ray-tracing
algorithm to convert spectral wave amplitudes, obtained
from the near-field integral representation, to spatial wave
amplitudes along the ray. This is done here by considering
the density of rays.
[26] We rewrite J as the ratio of infinitesimal volume

elements J = dx/dk. As noted by Lighthill [1996, equation
(A11)], the spatial volume element of size dx = Jdk is
occupied by waves with wave number k lying in a spectral
volume element of size dk. The spatial volume element dx is
carried along the ray and expands in size as t3, a result of the
geometrical spreading of the waves away from the source.
The factor of t3 is obtained from J � r6/t3 in (29) with r =
|cg|t along the ray. For a uniform background, the size of
the spectral volume element dk remains constant following
the ray.
[27] Let wave number space be discretized with grid

cells of finite volume dk. Suppose we launch one ray from
each wave number grid cell. Then the density of rays in
the wave number domain is 1/dk. The associated density
of rays in the spatial domain is 1/dx, where dx ≃ Jdk. The
last expression is approximate because J is approximated
by its value at the center of the wave number grid cell.
The finite-sized volume element dx, like the infinitesimal
volume element dx, is carried along the ray and expands
in size (approximately as t3) due to geometrical spreading.
To summarize,

spectral ray density ¼ 1=dk; ð33Þ

spatial ray density ¼ 1=dx≃1= Jdkð Þ: ð34Þ
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[28] Next we introduce a fixed spatial grid with grid cells
of fixed size Dx. Let the number of rays in a particular
spatial grid cell at time t be n. Then in that grid cell,

spatial ray density ¼ 1=dx≃n=Dx: ð35Þ

Hence (34) and (35) imply that

J≃dx=dk≃ Dx=nð Þ 1=dkð Þ: ð36Þ

[29] In ray-tracing, it is usually the squared wave ampli-
tude in some form (e.g. wave action, wave momentum flux),
that is advected along the ray. Working with the vertical
velocity (until section 7), the squared wave amplitude for w1

is, from (31) and (36),

w1w*1

D E
¼ 2pð Þ3J�1 W1W*

1

D E
; ð37Þ

≃ 2pð Þ3 dk=Dxð Þn W1W
�
1

� �
: ð38Þ

where 〈 〉 is an average over the wave phase, the asterisk
indicates a complex conjugate, and the value for 〈W1W1*〉
refers to some central ray in the spatial grid cell. Alterna-
tively, the solution can be averaged over each grid cell:

w1w*1

D E
≃ 2pð Þ3 dk=Dxð Þ ∑

n

j¼1
W1W*

1

D E
j
: ð39Þ

Here j is an index for each ray.
[30] The steps for the ray-tracing algorithm are then:
[31] 1. Discretize wave number space with elements of

size dk.
[32] 2. Launch one ray for each wave number element.
[33] 3. Assign each ray its spectral wave amplitude 〈W1W1*〉.
[34] 4. Ray-trace from position x0 at time t = 0.
[35] 5. Bin the rays spatially, in grid cells of size Dx.
[36] 6. Use (39) to compute the spatial wave amplitude.

This is close to the Vadas-Fritts algorithm. They use some-
what different initial conditions, as we shall discuss in
section 6. They also bin the rays in four-dimensional grid
cells that are discretized in time as well as in space.
[37] The ray Jacobian appears implicitly in the Vadas-

Fritts theory through a normalization factor that is the quo-
tient of the wave number volume elementDk and the spatial
volume element Dx [Vadas and Fritts, 2009, equation (62)].
[38] Note the distinction between a ray-tube method

[Hasha et al., 2008] and the ray-density method (39). The
ray-tube method computes geometrical spreading rates
explicitly and has to keep track of the varying size of dx
along the ray. Each ray individually provides the spatial
wave amplitude on that ray. The ray-density method com-
putes geometrical spreading rates implicitly from the density
of rays in a spatial volume element of predetermined size
Dx. Each ray individually provides the spectral wave
amplitude along that ray, but many ray-tracings are needed
to estimate the spatial wave amplitude from the ray density.

5. Vadas-Fritts Forcing

[39] We now set the forcing terms q(x) and r(t) in (3),
using the same functional form and parameter settings

following Vadas and Fritts [2009]. The spatial depen-
dence q(x) takes the Gaussian form

q ¼ q0exp � x2 þ y2
� �

=L2 � z� z0ð Þ2=D2
h i

; ð40Þ

where q0, L, D, and z0 are constants.
[40] The temporal dependence r(t) is

r tð Þ ¼ 1

t
1� cos at for 0 ≤ t ≤ t
0 otherwise

�
ð41Þ

where t is a constant, and a = 2p/t. The Fourier transform
(41) of r(t) is

R wð Þ ¼ a

t
sinc wt=2ð Þ
a2 � w2

e�{wt=2: ð42Þ

[41] The buoyancy frequency N = 0.02 s�1. The forcing
scales are, spatially, L = 20/4.5 km, D = 10/4.5 km, and
temporally, t = 12 min. The forcing is centered at z0 = 7 km.
We set the arbitrary forcing magnitude q0 = 103ms�1

because this value conveniently gives O(1) perturbation
velocities (in ms�1) over much of the spatial domain of
interest. The value for q0 may seem large, but see the com-
ments of Vadas and Fritts [2004, p. 788] about how the
forcing is largely balanced by pressure and potential tem-
perature perturbations rather than by large vertical motions.
[42] Since the forcing functions r(t) and q(x) are real, their

Fourier transforms satisfy R(w) = R*(�w) and Q(k) = Q*
(�k), where the asterisk denotes a complex conjugate.
Hence from (19) and (21),

F∗ kð Þ ¼ G �kð Þ: ð43Þ

We write F = |F| exp({b). From (19), the complex argument
b of F is equal to the sum of the complex arguments of Q
and R. These arguments are, respectively,

bQ ¼ mz0; ð44Þ

bR ¼ �st=2þ arg sin st=2ð Þ= a� sð Þ½ �: ð45Þ

Since the term in square parentheses in (45) is real, the
argument function in (45) is either zero or p, depending on
whether the sign of that term is positive or negative,
respectively. Since a and s are positive, we can write a � s
instead of a2 � s2 in (45).
[43] The spectral ray solutionW1 is then, starting with (32)

and taking a from (25),

W1 k; tð Þ ¼ F kð Þe{a þ G �kð Þe�{a; ð46Þ

¼ 2jF kð Þjcos st þ p=4� mz0 þ bð Þ; ð47Þ

¼ 2jF kð Þjcos st þ p=4þ bRð Þ: ð48Þ

The stationary phase solution (31) becomes

w1 x; tð Þ ¼ 2pð Þ3=2J�1=22jF kð Þjcos st þ p=4þ bRð Þ: ð49Þ
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The spectral amplitude F(k), defined generally in (19),
becomes

F kð Þ ¼ a2sQ
tN 2 a2 � s2ð Þ ð50Þ

with magnitude

jF kð Þj ¼ a2sjQj
tN 2ja2 � s2j jsin st=2ð Þj: ð51Þ

[44] Figure 1 shows solutions calculated from the exact
integral (16). Figure 1 (top) plots w at z = 70 km and
t = 45 min. This corresponds to the third row of Figure 6
of Vadas and Fritts [2009], but without ground reflection.
Figure 1 (bottom) is a vertical cross section of w for the case
without ground reflection in Figure 1c of Vadas and Fritts
[2009], and is plotted here using their same contour values.
These calculations were made with a discrete Fourier trans-
form approximation to the Fourier integral (16), on a spatial
grid of (128, 128, 192) points in x, y, z, respectively. The
grid spacing is 4 km in the horizontal directions, and 2.33 km
in the vertical.

[45] Figure 2 compares the exact integral solution (16) for
w and its stationary phase approximation w1 in (49). The
comparison is at t = 30 min and at three heights of 30, 40,
and 50 km. The solutions are symmetric about the x axis.
The stationary phase solution w1 is zero along the vertical
axis at x = 0 because no rays reach these points. The rays that
are directed vertically upward from the source have s = N
and hence zero group velocity.
[46] We now consider the ray-density method for com-

puting wave amplitudes. The idea is to compute the spatial
solution w1 in (49) from a ray-density approximation for the
Jacobian J. From (48),

W1W*
1

D E
¼ 2jFj2: ð52Þ

Using this, (39) becomes

w1w*1

D E
≃ 2pð Þ32 dk=Dxð Þ ∑

n

j¼1
jF kð Þj2j : ð53Þ

The ray-density approximation for w1 in (49) is then

w1≃ w1w*1

D E1=2
cos st þ p=4þ bRð Þ: ð54Þ

[47] In the Vadas-Fritts calculation the spatial grid cells of
size Dx are fixed in space, but they can also move to follow
a group of rays. We show two examples, one with a moving
spatial grid cell and one with a fixed spatial grid cell. Both
cases have the same spatial grid cell volume Dx and
dimensions 4 km by 4 km by 2.33 km, in x, y, and z,
respectively. This is the same spatial grid size used in the
calculation of Figure 1. The solutions are calculated every
0.75 min from t = 25 min to t = 59.5 min and plotted as a
function of t.
[48] The wave number grid cell is centered at (k0, 0, m0)

and has 21 wave numbers in each of the three components
for a total of 213 = 9261 launched rays. The central wave

Figure 1. The vertical velocity w derived from the exact
integral solution (16) without stationary phase approximation.
(top) Horizontal cross section at z = 70 km and t = 45 min.
Range (see color bar) is �0.33 ms�1. (bottom) Vertical cross
section at y = 0 and t = 20 min, with contour levels of
�(0.1, 0.3, 0.5, 0.7, 0.9) times the maximum w of 3.7 ms�1.
Positive values are shaded.

Figure 2. The vertical velocity w along the positive x axis,
at t = 30 min and at three heights, 30, 40, and 50 km. The
solutions are computed from the stationary phase approxi-
mation (solid) and the exact integral (dashed). The w solution
at each comparison height is plotted using that height as the
y-axis origin. Maximum values for the stationary phase solu-
tion in ms�1 are 0.89, 0.68 and 0.59 at heights 30, 40, and
50 km, respectively.
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number corresponds to a horizontal wavelength of 24.3 km,
a vertical wavelength of 19.3 km, an intrinsic frequency of
s = 0.6N, and a group velocity that reaches x = (80, 0, 70) km
at t ≃ 45 min. The wave number grid cell size is
dk = dk dl dm with dk = 1.72, dl = 1.83, and dm = 3.28, each
in units of 10�6m�1.
[49] In Figure 3, we compare solutions for the case of a

moving spatial grid cell. The solid curves denote the sta-
tionary phase solution (49) for w1 (Figure 3, top) and its
peak amplitude (Figure 3, bottom). The circles denote the
corresponding values obtained from the ray-density method
using (54) for Figure 3 (top) and (53) for Figure 3 (bottom).
The wave phase in (54) is evaluated along the ray using the
central wave number noted above. The center of the spatial
grid cell moves from about x = (44, 0, 42) km at t = 25 min
to about x = (105, 0, 91) km by t = 60 min. Recall that the
source is centered at x0 = (0, 0, 7) km.
[50] The theoretical stationary-phase prediction for the

number of rays contained in the moving spatial grid cell is

n ≃ Dx= Jdkð Þ ð55Þ

¼ Dx=dkð Þ Ntð Þ3r�6sin2qcosq: ð56Þ

Here we have used (36) and the expression for J in (29).
Relative to the source, the center of the spatial grid cell is
located at a fixed angle q = cos�1(s/N) of about 53° from the
vertical.
[51] Figure 4 shows the number of rays in the grid cell

predicted theoretically (solid curve) by (56) and the number
of rays counted in the ray-tracing calculation (circles).
[52] Figure 5 shows the solutions when the grid cell

remains at a fixed location centered around the point
x = 80 km, y = 0, z = 70 km. The solid curves denote the
stationary phase solution (49) for w1 (Figure 5, top) and its
peak amplitude (Figure 5, bottom). The stationary phase
amplitude grows until about 42 min and then decreases. The
circles denote the corresponding solution from the ray-
density method using (54) in Figure 5 (top) and (53) in

Figure 5 (bottom). Because we are considering a limited
wave number range in the ray-tracing, with a bandwidth in
wave number magnitude dK/K ≃ 0.17, the grid cell contains
rays for only a short time. No rays propagate into the grid
cell until t ≃ 41 min, and none are left in the grid cell
after t ≃ 49 min. This time range, and the associated
bandwidth for K, are consistent with the stationary phase
condition (27).

6. Initialization of the Ray-Tracing

[53] We now compare the ray initialization obtained from
stationary phase with the ray initialization implemented in
the Vadas-Fritts model. Vadas-Fritts advect along each ray a
spectral wave-momentum flux. We can most readily explain
the differences between the Vadas-Fritts and stationary
phase initializations by working instead with the spectral
vertical velocity, as in previous sections. We consider
spectral amplitudes more generally in section 7.

6.1. Stationary Phase Initialization

[54] The stationary phase condition (28) shows that all
rays are launched from x0 = (0, 0, z0) at t = 0. The initial

Figure 3. An illustration of the ray density method for
one grid cell following a group of rays. Solid curves
denote the analytic stationary phase solution for (top) w1

and (bottom) its peak amplitude. The units for w1 in both
panels are ms�1. Circles denote the solution from the ray-
density method.

Figure 4. The number of rays in the moving spatial grid
cell of Figure 3. The solid curve is the number predicted
by the stationary phase solution (56). Circles denote the
number of rays counted in the numerical ray-tracing.

Figure 5. Same as Figure 3 but for a grid cell at a fixed
location. Solid curves denote the stationary phase solution.
Circles denote the ray-density method.
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wave phase is p/4 + bR, as indicated by (48). The mean
square spectral wave amplitude for the ray-tracing is 2|F|2, as
also indicated by (48). As noted in the discussion preceding
(19), our solution for F is valid for times t > t, after the
forcing vanishes. We can still use this F to initialize the ray-
tracing, but the solution is not valid until t > t.
[55] In summary, the ray-tracing initial conditions from

stationary phase are:

time ¼ 0; ð57Þ

position ¼ x0; ð58Þ

wave phase ¼ p=4þ bR; ð59Þ

mean squared wave amplitude ¼ W1W1*
� �

; ð60Þ

¼ 2jFj2; ð61Þ

with |F| given by (51) and bR by (45).

6.2. Vadas-Fritts Initialization

[56] Vadas-Fritts initialize their ray-tracing with a spectral
amplitude derived from an integral representation involving
a Laplace transform in time. In Appendix A, we demonstrate
that their result can be reproduced using the Fourier trans-
form approach developed in earlier sections, giving an
equivalent ~w k; tð Þ in (A7). The spectral amplitude for times
t > t, after the forcing stops, is

j~w k; t > tð Þj ¼ 2
a2sjQj

tN 2ja2 � s2j jsin st=2ð Þj: ð62Þ

This is equivalent to the spectral amplitude 2|F| in the sta-
tionary phase solution (49), with |F| given by (51). Vadas-
Fritts account for any additional constant factors, such as the
(2p)3/2 in the stationary phase solution, through their nor-
malization, which is done by comparing the ray solution
with the exact integral solution [Vadas and Fritts, 2009,
p. 162].
[57] The wave phase in the Vadas-Fritts model is given by

[Vadas and Fritts, 2009, equation (46)]

fvf tð Þ ¼ f0 þ
Z t

ti

sdt: ð63Þ

The rays are launched at time ti from position x0 with initial
phase f0. The sign before the integral in (63) is negative in
the Vadas-Fritts notation but positive here. The integral is
taken along the ray and reduces to s(t � ti) for a uniform
background.
[58] Vadas-Fritts choose f0 to be the wave phase at t = t.

This is a natural choice, given that the wave phase contains
the phase of ~w in (A7), and this solution for ˜w is not valid
until t = t. Vadas-Fritts then adjust the launch time of the
rays to find the best ray approximation to the exact integral
solution, settling on ti = t/2 [Vadas and Fritts, 2009, p. 161].
[59] For the Vadas-Fritts choice of f0, the stationary phase

solution indicates that the rays should be launched at ti = t

from the ray-dependent position x0 + cgt, where cg is the
group velocity vector of the ray. This is consistent with the
stationary phase prediction that all rays originate from x0 at
t = 0. Alternatively, one can simply launch all rays from x0 at
t = 0 with f0 set to the wave phase at t = 0, as in section 6.1.
Although f0 contains the phase of ~w in (A7), which is not
correct until t = t, this initialization will give the correct
stationary phase solution for times t > t.
[60] The Vadas-Fritts initialization of the wave phase

omits the p/4 phase shift in the stationary phase solution
(49). Our calculations indicate that this has a relatively small
effect on the solution for the Vadas-Fritts parameters.

7. Extension to a Non-uniform Background

[61] Consider the relation [cf. Bühler et al., 1999,
equation (19)]

Z
D tð Þ

ss∗
� �

dx ¼ 2pð Þ3
Z
K tð Þ

SS∗
� �

dk: ð64Þ

Here s(x, t) is the ray solution for any field variable, and
S(k, t) is the corresponding ray variable in Fourier space. For
the previous results s = w1 of (22) and (31), and S = W1 of
(32). The regions D tð Þ and K tð Þ are related point-wise by the
group velocity condition, which for a non-uniform back-
ground is x =

R
cg dt, with the integral taken along the ray.

[62] For sufficiently small volumes, (64) approximates to

ss∗
� � ¼ 2pð Þ3 SS∗

� �
dk=dx; ð65Þ

where the finite volume elements dx and dk introduced in
section 4 correspond to D tð Þ and K tð Þ, respectively.
[63] For a uniform background, 〈SS*〉 and dk are constant

along the ray, and dx can be estimated by the ray density
method, as in (35).
[64] For a non-uniform background, 〈SS*〉 and dk both

vary following the ray, but if 〈SS*〉 represents a conserved
quantity, such as the wave-action density, then by definition
the product of 〈SS*〉 and dk is constant following the ray
during conservative propagation. Using the ray-density
approximation dx = Dx/n, as in (35), we obtain

ss∗
� � ¼ 2pð Þ3 SS∗

� �
0
dk0n=Dx: ð66Þ

The zero subscript above indicates an initial value, for
example at t = t in (41) when the forcing has just finished.
We have assumed that one ray is launched from each wave
number volume element of size dk0. Equation (66) is the
generalization of (38) for a non-uniform background.
[65] Another way of deriving (66) is through the conser-

vation equation for wave action in the form given by Hayes
[1970]:

AJH ¼ constant along a ray: ð67Þ

Here A is the wave-action density per unit volume, and JH is
the Jacobian of the Hayes formulation:

JH ¼ j∂ x; y; zð Þ=∂ a; b; cð Þj: ð68Þ
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The vector a = (a, b, c) is a label for each ray. To conform
with Vadas-Fritts, we choose a = k0, the initial wave number
of the ray. Then

AJH ≃ Adx=dk0 ð69Þ

≃ Adx=dk0½ �x→x0
ð70Þ

≃ ~A0; ð71Þ

where Ã0 is the spectral wave-action density at x0.
[66] Using, as in (35), the ray-density approximation

dx ≃ Dx/n with (69) and (71) gives

A ¼ ~A0 dk0 n=Dx: ð72Þ

This is equivalent to (66) with A = 〈ss*〉 and Ã0 = (2p)3〈SS*〉0.
[67] The integral ray formulation (64) and the Hayes ray

formulation (67) are completely general in that the back-
ground can vary in all directions and in time, and the
wavefield can be transient or steady state. Thus the
corresponding ray-density approximations (66) and (72) are
also general. It is only necessary to assume a uniform
background for the near-field Fourier analysis, which
determines the initial condition for (64) and the constant
in (67).

8. Summary and Outlook

[68] We used the stationary phase method to analyze the
Vadas-Fritts ray-tracing model of gravity waves generated
by a convective plume. Like Vadas-Fritts, stationary phase
takes spectral wave amplitudes from a near-field integral
representation and converts them to spatial wave amplitudes
along raypaths. It provides all quantities necessary to ini-
tialize a ray-tracing, as we discussed in section 6. It also
expresses the conversion factor from spectral to spatial wave
amplitudes in terms of a ray Jacobian. As discussed in
section 4, the Vadas-Fritts method in essence uses the den-
sity of rays to approximate the ray Jacobian, and the ray
Jacobian to convert spectral wave amplitudes to spatial wave
amplitudes.
[69] Introducing the ray Jacobian explicitly is beneficial in

three ways. First, the ray Jacobian is useful in itself for
estimating geometrical spreading rates, which affect local
wave amplitudes. While the analytic expression for the ray
Jacobian in (29) is valid for a uniform background, this is
sometimes sufficient for rough estimates of geometrical
spreading rates in more general backgrounds, as in Table 1
of Fritts and Vadas [2008]. The present analysis suggests
that this Fritts-Vadas estimate can be improved. They
assume that the gravity wave momentum flux is proportional
to r�2 following a ray, where r is the distance from the
source. This takes into account geometrical spreading in the
horizontal directions, but the geometrical spreading is three
dimensional for a transient source of gravity waves. The
wave amplitude is then proportional to r�3/2, as noted at
the end of section 3, and the momentum flux is propor-
tional to r�3.
[70] Secondly, the accuracy of the Vadas-Fritts conversion

of spectral to spatial wave amplitudes along the ray is
equivalent to the accuracy of the ray-density approximation
for the ray Jacobian. Thus the ray Jacobian approximation

alone can be analyzed and tested in order to estimate the
number of rays needed for accurate wave amplitude calcu-
lation in a specific application.
[71] Third, the ray Jacobian identifies the conversion of

spectral to spatial wave amplitudes as a local transformation.
Thus the Vadas-Fritts method can be applied locally to fol-
low a beam of rays, with a single moving grid cell rather
than a three dimensional spatial grid of many stationary
cells. We showed an example in Figure 3. The moving grid
cell may be a useful generalization of the Vadas-Fritts
method.
[72] We limited our analysis to the simplest case of a

uniform windless background, except for the derivation in
section 7 that indicates how to extend the method to a non-
uniform background. For further tests and analysis, the
Vadas-Fritts method could be compared with the exact
integral solution and stationary phase approximation of
Shutts [1998] for mountain waves in wind shear, and of
Dupont and Voisin [1996] for gravity waves generated by a
translating oscillating source in a uniform background. Both
of these models have regions of strong ray focusing where
standard ray methods break down, including caustics. The
ray density method has the potential to smooth out caustics
and related focusing regions and produce more accurate
estimates of the wave amplitudes than obtained from stan-
dard spatial ray-tracing methods. The ability of the ray-
density method to smooth out caustics has been demon-
strated in a case of electromagnetic waves by Didascalou
et al. [2000].

Appendix A

[73] We used a Fourier transform in time for the near-field
integral representation in (9) and (10) rather than the Laplace
transform in time of the Vadas-Fritts theory. We check that
our result matches Vadas-Fritts, i.e. that the inverse Fourier
transform

~w k; tð Þ ¼
Z

W k;wð Þe{wtdw ðA1Þ

gives the same ~w k; tð Þ as Vadas and Fritts [2009,
equation (12)] obtained by inverse Laplace transform. Here
W(k, w) is defined in (9) as the space-time Fourier transform
of the vertical velocity w.
[74] We substitute for W(k, w) from (11) and displace the

integration path in (A1) by �{� to obtain

~w k; tð Þ ¼ �{k2hQ

Z �{�þ∞

�{��∞
wR=Bð Þe{wtdw: ðA2Þ

The small positive � will ultimately tend to zero. As noted by
Lighthill [1996, 1978, p. 267], the introduction of � ensures
that the system is completely undisturbed in the limit of
large negative t. See also the causality comments by Voisin
[2003, equation (2.16)].
[75] From the integrand of (A2) and R(w) in (42) we have

wRe{wt ¼ 2a

t2
sin wt=2ð Þ
a2 � w2

e{w t�t=2ð Þ; ðA3Þ

¼ � {a

t2
1

a2 � w2
e{wt � e{w t�tð Þ
h i

: ðA4Þ
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Substituting (A4) into (A2) leaves

~w k; tð Þ ¼ �k2haQ

t2

Z �{�þ∞

�{��∞

e{wt � e{w t�tð Þ

a2 � w2ð ÞB dw; ðA5Þ

The poles of this integrand are at B = 0 (not w = � a) and
correspond to the frequencies that satisfy the dispersion
relation w = � s(k).
[76] For t < 0, before the forcing in (41) is turned on, the

exponentials exp({wt) and exp[{w(t� t)] vanish as wi→�∞,
where wi is the imaginary part of w. The integration path is
thus closed in the lower half plane with a semicircle of
infinite radius. Since the poles at B = 0 are on the real w axis,
exterior to the integration path, ~w k; tð Þ ¼ 0, as expected for
times that precede the forcing.
[77] For t > t, after the forcing is turned off, the expo-

nentials exp({wt) and exp[{w(t � t)] vanish as wi → +∞. The
integration path is thus closed in the upper half plane. The
poles B = 0 on the real w axis then reside within the inte-
gration path. The residue at each pole is obtained by repla-
cing B in (A5) with its derivative Bw = 2w(kh

2 + m2) and
evaluating the integrand at the respective pole, w = �s(k).
The integral (A5) is 2p{ times the sum of the two residues,
resulting in

~w k; tð Þ ¼ 2pk2hQa
s k2h þ m2
� �

t2
sin stð Þ � sins t � tð Þ

a2 � s2
; ðA6Þ

after taking the limit � → 0. Using the dispersion relation
and, from below (41), 2p = at, (A6) reduces to the solution
given by Vadas and Fritts [2009, equation (12)]:

~w k; tð Þ ¼ a2sQ
tN 2 a2 � s2ð Þ sin stð Þ � sins t � tð Þ½ �: ðA7Þ

To convert from our notation to that of Vadas-Fritts, let
a → â, t → st, s → w, Q → ~Fz= 2pð Þ3, and ~w → ~w= 2pð Þ3.
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